浦科特 M8VC SATA3 固态硬盘使用总结(速度|稳定性)

【什么值得买 摘要频道】下列精选内容摘自于《SSD科学研究 篇五:新一代64层3D NAND小红砖—Plextor 浦科特 M8VC 512GB SATA SSD固态硬盘性能解析》的片段:

Plextor M8VC 512GB包装四面观

全家福

盘体四面观,背面的标签也说明了该盘的固件版本是最初的1.00出厂固件

拆解

PCB背面是两颗TOSHIBA的TH58TFT0T23TA2H的64层3D TLC NAND

PCB正面:SMI2258H主控一颗,三星K4B8G1646D DDR3L-1600 1GB的缓存一颗,TOSHIBA的TH58TFT0T23TA2H的64层3D TLC NAND两颗。

SMI2258H应该是SMI2258的小改款,针对3D NAND做出的改动版,本质上应该还是SMI2258,这种小改款的先例也屡见不鲜,包括给INTEL的IMFT 3D 64层堆栈TLC定制的主控SMI2259大量应用在545S上,还有给LITEON使用的HYNIX 16NM 2D TLC定制的SMI2254G主控大量应用在LITEON V5型号上,本质其实还是SMI2258。

那么这个主控的属性还是很基础的4通道8CE的支持度,总容32CE,从这个盘使用的4颗4CE的TOSHIBA的TH58TFT0T23TA2H来看,该主控优先填满了四颗NAND的四个通道,然后接驳每个NAND的4个CE,达成16CE的半容状态,也就是说,如果使用8颗TH58TFT0T23TA2H的话,使用2258H主控可以达成1TB容量并且满32CE的全速性能。

参数

M8VC与M7VC 512GB的参数对比

从数据来看,M8VC相对M7VC都有小幅的性能减退,耐用度也从320TBW降低到了280TBW,RMA保固依然是3年没变化,从TBW耐用度而言更定向针对的是数据安全,而RMA保固更定向针对的是资产保护,从数据安全性而言,确实M7VC更好一些,但是浦科特的RMA政策是三年内只要坏了盘直接顺丰到付过去RMA中心,然后顺丰已付发换新品到客户手里。从资产保护角度而言,两者是没有区别的。

厂商所定义的速度指标,尤其是民用范畴的SSD,向来都是比较混乱的标准,Plextor的Perfermance标准是使用CDM5.0.2和IOMETER1.1.0在ASUS X99-A II平台使用WIN10 X64 专业版得出的。但是一般消费级都会标明最大达到多少,详细的效能因为SLC Cache的关系,所以最大达的概念,往往更接近SLC Cache部分的效能,而真实的使用Perfermance往往厂商没有提供,大部分消费者也不会测试,所以很多消费级产品也开始浑水摸鱼了,标称和实际的Perfermance效能天差地别,于是便有了一系列拆盘怼脸的网络闹剧发生,而大众在不明水深的情况下一般都会尽量去选择品牌较为知名或者京东好评较高的SSD产品去购买,其次考虑的是性价比,于是大部分值友的意见出奇的统一:

1、买大品牌的基本不会有事!

2、便宜一点更好

3、一定要好评多

那么关于大品牌的主流产品的Perfermance是否是靠谱的呢,我也就顺手拿这个M8VC 512GB来做一个测试还原一下这个产品真正意义上Perfermance的本来面目。

测试平台

笔记本平台:HP ZHAN66 PRO G1

CPU:I5 8250U (4C8T 睿频最大3.4G)

RAM:DDR4 2400 8GB

GPU:Nvidia MX150 2GB DDR5

M.2:三星PM961 M.2 256GB

SATA:浦科特M8VC 512GB

系统:WIN10 X64 专业版1709

HP ZHAN66 PRO G1预留了一个SATA空位

但是要安装SATA需要拆卸两块D面板,从易用性而言,这个拆卸没有撬棒很难无损完成。

一般性测试


1、AS SSD BENCHMARK 

AS SSD BENCHMARK 我选用的版本是2.0.6485.19676,比较新的版本,测试的方法是分别测试空盘和90%满盘状态下的1GB3GB5GB10GB数据块大小下的效能衰减幅度,从而粗略评估这个盘的性能在写入数据的情况下的效能衰减。

空盘下

90%满盘下

对比结果可以看出,主要发生衰减的是SLC Cache爆掉之后暴露出来的TH58TFT0T23TA2H 3D TLC的实际NAND持续写入的速度,而其他的参数几乎没发生什么变化,空盘下10GB数据块测试,持续写入就已经发生衰减了,而90%满盘下,持续写入已经完全跑在了NAND的实际速度下了,320MB/S左右的持续写入速度是这个盘的NAND实际持续写入速度,就这么两张图,体现出来的问题其实挺多的:

第一、3D TLC NAND的调试非常到位,当SLC Cache爆掉之后,完全看的就是固件的平衡能力了,平衡做得不好的固件,不但持续写入速度会掉,包括持续读取,4K读写都会掉,但是M8VC做的很好,在SLC Cache爆掉之后仅仅以持续写入速度掉落在NAND实际持续写入速度的代价获得了整体性能的不衰减。

第二、90%满盘情况下,无论1G3G5G10G数据块下,性能都几乎没有任何浮动,且非常稳定,说明SLC Cache爆掉之后的副作用已经完全被固件的平衡冗余掉了,体现出来的是稳定可靠的性能。但是AS SSD所能体现出来的参数太少,而这个软件又具有普遍性的大众认可度,所以大部分厂家的性能都会针对这个软件进行优化,所以我们要请出第二个大众化测试软件CrystalDiskMark。

2、CrystalDiskMark

CrystalDiskMark 测试版本为5.2.1 X64,测试方法同上,分别测试空盘和90%满盘状态1GB4GB16GB32GB数据块大小下的效能衰减幅度,从而粗略评估这个盘的性能在写入数据的情况下的效能衰减。

空盘下

前面我们说到了大部分厂家会针对AS SSD BENCHMARK进行优化,因为ASS最大的数据块大小也就是10GB而已,所以前面我们所看到的ASS测试,已经是被完美优化过的,但是当我使用CrystalDiskMark测试16GB这种大于10GB的数据块的时候,实际的情况就被暴露了,4K随机QD1的读取被直接从40MB/S打下到了20MB/S。

那么前面我们说过了厂商详情页所描述的最大参数是:

那么我再用CrystalDiskMark的1GB数据块空盘状态下的测试来复现一下参数的确认

持续读取速度:563.1MB/S

持续写入速度:522.5MB/S

随机读取速度:322.6MB/S  X 1024 / 4 = 82585.6 IOPS

随机写入速度:287.1MB/S X 1024 / 4=73497.6 IOPS

而这里的随机写入速度很大部分要受到CPU主频的影响,也就是说主板的PCH芯片组的ME版本越新,CPU的主频越高,所获得的随机写入速度往往越高,所以我初略评估了一下,还是和厂商标称差不多的。如果使用Z370+8700K超频到5G的情况下,随机写入速度可以在软件中顶上80K IOPS,但是这种参数并不是我们真正需要关注的地方,因为顶着SLC Cache的魔法盾和高CPU主频加持下的性能往往不是那么稳定的,所以厂商也很明智的挂上三个字:最大达。

90%满盘下4K随机QD1的读取和持续写入的QD1和QD32深度的数据同步发生降速情况,客观来说,M8VC确实针对ASS优化了,而更多的衰减是发生在大于10GB的数据块下的测试中的,但是其实这些都不影响主要的权重性能,SSD的固件开发就如同一个天平,主控的CPU资源是有限的,NAND的实际读写能力是有限的,SLC Cache的大小是有限的,如何调度这三方面的性能满足消费级大部分的使用需求才是最重要的

那么我用90%满盘下的32GB数据块下已经爆掉SLC Cache的测试来获取一个相对效能最差的参数统计如下:

持续读取速度:552.6MB/S

持续写入速度:378.0MB/S

随机读取速度:326.1MB/S  X 1024 / 4 = 83481.6 IOPS

随机写入速度:261.7MB/S X 1024 / 4=66995.2 IOPS

这已经是CrystalDiskMark中相对最差的情况了,依然有这样的性能,要知道,这已经是爆掉SLC Cache后3D TLC实际的写入速度了,可以说,M8VC做的还是中规中矩,没丢大厂的面子。

这个测试带我们走过厂商宣称的最好效能和我们实测的最差情况下的效能参数对比,体现了一个SSD在NAND实际速度和固件平衡能力以及盘内容量大部分写入情况下的综合能力。

3、HD TACH RW 3.0.1.0

这个软件可以称为是个远古的软件了,开发到今天已经有14年历史了,测试时间爆长,完整的读写测试时间甚至长达几个小时乃至一夜时间,主要体现在RAW情况下的持续读写的稳定性能力,因为早年的IO评估早已过时了,但是对于测试一个SSD,从0开始写入随着写入容量的攀升这个阶段中的SSD持续读写稳定性有一定参考价值,图线可以看出,读取还是相对比较稳健的,有浮动但是并不大,基本都可以稳定下来,而写入的话,爆掉了前段的SLC Cache之后跌落在一定值依然可以保持稳定的态势,无异常的诡异跌落情况,总体评估下来感觉尚可。

4、TRIM CHECK

TRIM CHECK是一款很实用的检测SSD是否TRIM生效状态的软件,TRIM指令让操作系统可以告诉固态驱动器哪些数据块是不会再使用的;否则SSD控制器不知道可以回收这些闲置数据块,TRIM可以减少写入负担,同时允许SSD更好地在后台预删除闲置的数据块,以便让这些数据块可以更快地预备新的写入。当然光操作系统支持TRIM不行,还需要SSD的固件支持,

向SSD里写入一个16M的文件,这文件头的前16位字节如上图白色区域所表示,这也是该文件唯一的文本字符串,然后将其删除,如果TRIM工作,控制器也将删除这个数据,这时候软件让你等待大约20秒后然后按ENTER继续,然后关闭软件再次打开。

再次打开软件,提示原白色区域的字节已经被0所填充,说明主控固件的TRIM机制有效。

5、DATAWRITE

DATAWRITE是我的一个程序员朋友pufer在谈笑间写出的一个小程序,用于验证2D 3D TLC真实写入速度的。规则是使用随机模式QD1深度随机往SSD里面写入1GB数据并且反馈即时的写入速度,这个软件当时我们开玩笑说的是,大部分的测试软件都在RAW格式下测试写入速度有失偏颇,那么我们能否直观一些在NTFS格式下进行一些动态写入以获得初略的2D 3D TLC NAND真实的写入速度评估,结果一个小时就写出来了。

从截图来看,爆掉SLC Cache之后的写入速度是稳定在320-330MB/S之间的,这也间接验证了我们前面测试所获得结论,M8VC 512GB的3D TLC NAND实际写入速度就在这个速度左右,而我们早期所接触的很多2D TLC的实际写入速度大部分在150-250MB/S之间的,显然TOSHIBA的64层堆栈3D TLC的写入更具有优势。

SNIA稳定态测试   

很少有人将一个消费级SSD推到极限的情况下去评估Perfermance效能,因为大部分的情况是掉成狗,有很多厂家是很忌讳使用SINA的标准SSD测试规范对他们的产品进行评估的,因为原因刚才说过了,评估完毕了就卖不掉或者卖不动了,因为这个测试会将一切的外部加成全部忽略掉,而仅仅保留NAND本质的速度,进行严格的稳定态测试,并不是所有厂家都愿意脱光了衣服给你看自己的产品有多少分量的,基本的营销模式还是该骗的继续骗

在SNIA组织定义的规范中,规范了如何测试闪存设备或固态存储。业界希望有一种来比较SSD的科学方法,这也是需要SNIA测试规范的原因。SSD的写入性能在很大程度上取决于NAND的写入历史。SSD一般有三个写阶段:

1、FOB(全新从盒子里拿出来的状态)

2、Transition(过渡)

3、Steady State(稳定状态)

以上图例来自SINA PTS 1.1测试规范

Transition(过渡)过渡是FOB和稳态的良好表现之间的阶段。大多数情况下,性能会随着时间的推移而持续下降,直到达到稳定状态为止。SNIA PTS1.1的测试规范则很严格的监控了FOB到稳定态的每一个阶段,以及评估标准帮你去确认你的企业级SSD确实达到了稳定态,所以根据以上溯源我们有了如下的操作:

" 查看该摘要的原文,请点击《SSD科学研究 篇五:新一代64层3D NAND小红砖—Plextor 浦科特 ...》